TERMODINÁMICA
La termodinámica ofrece un aparato formal aplicable únicamente a estados de equilibrio,definidos como aquel estado hacia «el que todo sistema tiende a evolucionar y caracterizado porque en el mismo todas las propiedades del sistema quedan determinadas por factores intrínsecos y no por influencias externas previamente aplicadas».Tales estados terminales de equilibrio son, por definición, independientes del tiempo, y todo el aparato formal de la termodinámica todas las leyes y variables termodinámicas, se definen de tal modo que podría decirse que un sistema está en equilibrio si sus propiedades pueden describirse consistentemente empleando la teoría termodinámica. Los estados de equilibrio son necesariamente coherentes con los contornos del sistema y las restricciones a las que esté sometido. Por medio de los cambios producidos en estas restricciones (esto es, al retirar limitaciones tales como impedir la expansión del volumen del sistema, impedir el flujo de calor, etc.), el sistema tenderá a evolucionar de un estado de equilibrio a otro; comparando ambos estados de equilibrio, la termodinámica permite estudiar los procesos de intercambio de masa y energía térmica entre sistemas térmicos diferentes.
Diagrama de flujo
1-declaración
W , Q - enteros
V - Reales
2- Asignación
W = 6J
Q = 90J
3- Proceso:
a) W = 6J
b) Por primera ley:
V = Q – W
4- Resultados
V = Q – W
V = 90 - 6
V = 84J
Segunda ley de la termodinámica
Esta ley marca la dirección en la que deben llevarse a cabo los procesos termodinámicos y, por lo tanto, la imposibilidad de que ocurran en el sentido contrario (por ejemplo, dice algo así como que una mancha de tinta dispersada en el agua no puede volver a concentrarse en un pequeño volumen). También establece, en algunos casos, la imposibilidad de convertir completamente toda la energía de un tipo a otro sin pérdidas. De esta forma, la segunda ley impone restricciones para las transferencias de energía que hipotéticamente pudieran llevarse a cabo teniendo en cuenta solo el primer principio. Esta ley apoya todo su contenido aceptando la existencia de una magnitud física llamada entropía, de tal manera que, para un sistema aislado (que no intercambia materia ni energía con su entorno), la variación de la entropía siempre debe ser mayor que cero.
Debido a esta ley también se tiene que el flujo espontáneo de calor siempre es unidireccional, desde los cuerpos de mayor temperatura hacia los de menor temperatura, hasta lograr un equilibrio térmico.
La aplicación más conocida es la de las máquinas térmicas, que obtienen trabajo mecánico mediante aporte de calor de una fuente o foco caliente, para ceder parte de este calor a la fuente o foco o sumidero frío. La diferencia entre los dos calores tiene su equivalente en el trabajo mecánico obtenido.
Existen numerosos enunciados equivalentes para definir este principio, destacándose el de Clausius y el de Kelvin.
Q neto = Qc – Qf
Qc= Energía que se absorbe (el subíndice C se refiere a caliente)
Qf= Energía que se sede (el subíndice F se refiere a frío)
ΔU = "Cero" Debido a que la sustancia de trabajo se lleva a través de un ciclo, su energía interna inicial y final es la misma, por lo que la variación de energía interna es cero.
Por lo tanto el trabajo es:
W = /Qc/ - /Qf/
Enunciado de Clausius
Diagrama del ciclo de Carnot en función de la presión y el volumen.
En palabras de Sears es: «No es posible ningún proceso cuyo único resultado sea la extracción de calor de un recipiente a una cierta temperatura y la absorción de una cantidad igual de calor por un recipiente a temperatura más elevada».
Enunciado de Kelvin—Planck
Es imposible construir una máquina térmica que, operando en un ciclo, no produzca otro efecto que la absorción de energía desde un depósito, con la realización de una cantidad igual de trabajo. Sería correcto decir que "Es imposible construir una máquina que, operando cíclicamente, produzca como único efecto la extracción de calor de un foco y la realización equivalente de trabajo". Varía con el primero, dado a que en él, se puede deducir que la máquina transforma todo el trabajo en calor, y, que el resto, para otras funciones... Este enunciado afirma la imposibilidad de construir una máquina que convierta todo el calor en trabajo. Siempre es necesario intercambiar calor con un segundo foco (el foco frío), de forma que parte del calor absorbido se expulsa como calor de desecho al ambiente. Ese calor desechado, no pude reutilizarse para aumentar el calor (inicial) producido por el sistema (en este caso la máquina), es a lo que llamamos entropía.
Diagrama de flujo
1-declaración
W , Qc , Qf , T , E , S
2- Asignación
Qc = 455 kcal
Qf = 130 kcal
T= 30s
3- Proceso:
a) W = Qc - Qf
b) E = W / Qc
c) S = Qc / T
4- Resultados
a) W = Qc - Qf
W = 325 kcal
b) E = W / Qc
E = 0.71
c) S = Qc / T
S = 15.1 kcal/s
0 comentarios:
Publicar un comentario